Энергия и мощность сигнала

Энергия и мощность сигнала

DSPL-2.0 — свободная библиотека алгоритмов цифровой обработки сигналов

Распространяется под лицензией LGPL v3

Страница проекта на GitHub.

Содержание

Энергия и средняя мощность сигналов

Пусть дан некоторый сигнал , который характеризует изменение напряжения или силы тока во времени. Тогда будет определять мгновенную мощность, выделяемую на сопротивлении 1 Ом.

Таким образом, периодические сигналы, повторяющиеся на все оси времени мы можем характеризовать конечной средней мощностью , поскольку их энергия бесконечна. Непериодические сигналы характеризуются конечной энергией , потому что их средняя мощность на все оси времени равна нулю.

Выражения (1)–(3) справедливы и для комплексного сигнала . В этом случае, мгновенную мощность можно определить как .

Скалярное произведение сигналов. Обобщенная формула Рэлея

Пусть даны два сигнала и , в общем случае комплексные. Скалярным произведением сигналов называется величина равная:

Заметим, что скалярное произведение сигнала с самим собой возвращает энергию данного сигнала:

Подставим в (4) вместо обратное преобразование Фурье его спектральной плотности . Тогда:

Можно сделать вывод: скалярное произведение сигналов во временно́й области, с точностью до множителя , равно скалярному произведению спектральных плотностей данных сигналов. Выражение (7) носит название обобщенной формулы Рэлея [1, стр. 67].

Равенство Парсеваля

Ранее мы уже рассматривали равенство Парсеваля, связывающее среднюю мощность периодического сигнала. Для непериодических сигналов мы можем получить аналогичное равенство энергии сигнала во времени и в частотной области. Для этого в обобщенную формулу Рэлея подставим и получим:

Таким образом, энергия сигнала во временно́й и частотной областях равна с точностью до множителя .

Если в выражениях (7)–(9) использовать частоту , выраженную в герц, вместо циклической частоты , измеряемой в единицах рад/c, то и множитель сокращается:

Спектральная плотность энергии сигнала

При рассмотрении предельного перехода к преобразованию Фурье было введено понятие спектральной плотности сигнала и была приведена аналогия поясняющая понятие спектральной плотности, и ее отличие от спектра периодического сигнала.

Из равенства (9) следует, что энергия сигнала может быть представлена как интеграл по всей оси частот:

Сделаем важное замечание. Спектральная плотность энергии игнорирует ФЧХ сигнала. Тогда можно заключить, что одной и той же спектральной плотности энергии могут соответствовать множество различных сигналов, имеющих одинаковую АЧХ и различные ФЧХ.

Спектральные плотности сигналов имеют убывающий по частоте характер , и на практике анализ поведения убывающей спектральной плотности с ростом частоты имеет важное значение. Однако графический анализ бывает затруднителен ввиду высокой скорости убывания спектральной плотности по частоте, а в случае спектральной плотности энергии затруднителен вдвойне, поскольку возведение АЧХ в квадрат только ускоряет убывание. Поэтому широкое распространение получило представление спектральной плотности энергии в логарифмическом масштабе, выраженной в единицах децибел (дБ):

В качестве примера на рисунке 1 приведены спектральные плотности энергии прямоугольного, треугольного, двустороннего экспоненциального и гауссова импульсов в линейном и логарифмическом масштабе.

Как видно из рисунка 1а, спектральные плотности энергии импульсов в линейном масштабе практически сливаются и очень сложно различимы.

Логарифмическая шкала представления спектральной плотности энергии оказывается удобной при сравнении характеристик сигналов. Если энергии двух сигналов отличаются в 100 раз, то в логарифмической шкале отношение их энергий составляет 20 дБ. Если же энергии отличаются в 1000000 раз, то в логарифмической шкале это соответствует 60 дБ. Удвоение энергии сигнала, в логарифмической шкале соответствует прибавлению 3 дБ.

Выводы

В данном разделе мы рассмотрели энергетические характеристики периодических и непериодических сигналов. Мы показали, что периодические сигналы имеют бесконечную энергию, но конечную среднюю мощность. Средняя мощность непериодических сигналов стремится к нулю, а их энергия конечна.

Было введено понятие скалярного произведения сигналов и получена обобщенная формула Релея,связывающая скалярное произведение во временной и частотной областях.

Установлено равенство Парсеваля для непериодических сигналов, как частный случай формулы Релея.

Введено понятие спектральной плотности энергии как квадрата модуля спектральной плотности сигнала. Также рассмотрено представление спектральной плотности энергии в линейном и логарифмическом масштабе для различных сигналов.

Понятия мощности и энергиив теории сигналов не относятся к характеристикам каких-либо физических величин сигналов, а являются их количественными характеристиками, отражающими определенные свойства сигналов и динамику изменения их значений (отсчетов) во времени, в пространстве или по любым другим аргументам.

Для произвольного, в общем случае комплексного, сигнала s(t) = a(t)+jb(t), где а(t) и b(t) – вещественные функции, мгновенная мощность (instantaneous power) сигнала по определению задается выражением:

w(t) = s(t) s*(t) = [a(t)+jb(t)] [a(t)-jb(t)] = a 2 (t)+b 2 (t) = |s(t)| 2 , (2.9)

т.е. функция распределения мгновенной мощности по аргументу сигнала равна квадрату функции его модуля, для вещественных сигналов – квадрату функции амплитуд.

Аналогично для дискретных сигналов:

Энергия сигнала (также по определению) равна интегралу от мощности по всему интервалу существования или задания сигнала. В пределе:

Еs =w(t)dt =|s(t)| 2 dt. (2.10)

Читайте также:  Пропадает меню пуск windows 10

Es =wn =|sn| 2 . (2.10′)

Мгновенная мощность w(t) является плотностью мощности сигнала, так как измерения мощности возможны только через энергию на интервалах ненулевой длины:

w(t) = (1/Dt)|s(t)| 2 dt.

Энергия сигналов может быть конечной или бесконечной. Конечную энергию имеют финитные сигналы и сигналы, затухающие по своим значениям в пределах конечной длительности, которые не содержат дельта-функций и особых точек (разрывов второго рода и ветвей, уходящих в бесконечность). В противном случае их энергия равна бесконечности. Бесконечна также энергия периодических сигналов.

Как правило, сигналы изучаются на определенном интервале Т, для периодических сигналов – в пределах одного периода Т, при этом средняя мощность (average power) сигнала:

WT(t) = (1/T)w(t) dt = (1/T)|s(t)| 2 dt. (2.11)

Понятие средней мощности может быть распространено и на незатухающие сигналы, энергия которых бесконечно велика. В случае неограниченного интервала Т строго корректное определение средней мощности сигнала должно производиться по формуле:

Ws = w(t) dt. (2.11′)

Квадратный корень из значения средней мощности характеризует действующее (среднеквадратическое) значение сигнала (root mean sqare, RMS).

Применительно к электрофизическим системам, данным понятиям мощности и энергии соответствуют вполне конкретные физические величины. Допустим, что функцией s(t) отображается электрическое напряжение на резисторе, сопротивление которого равно R Ом. Тогда рассеиваемая в резисторе мощность, как известно, равна (в вольт-амперах):

а полная выделенная на резисторе тепловая энергия определяется соответствующим интегрированием мгновенной мощности w(t) по интервалу задания напряжения s(t) на резисторе R. Физическая размерность мощности и энергии в этом случае определяется соответствующей физической размерностью функции напряжения s(t) и сопротивления резистора R. Для безразмерной величины s(t) при R=1 это полностью соответствует выражению (2.2.1). В теории сигналов в общем случае сигнальные функции s(t) не имеют физической размерности, и могут быть формализованным отображением любого процесса или распределения какой-либо физической величины, при этом понятия энергии и мощности сигналов используются в более широком смысле, чем в физике. Они представляют собой метрологические характеристики сигналов.

Из сравнения выражений (2.9) и (2.10) следует, что энергия и норма сигнала связаны соотношениями:

Es = ||s(t)|| 2 , ||s(t)|| = (2.12)

Пример.Цифровой сигнал задан функцией s(n) = <0,1,2,3,4,5,4,3,2,1,0,0,0,0. >.

Энергия сигнала: Es = s 2 (n) = 1+4+9+16+25+16+9+4+1 = 85.

Норма: ||s(n)|| = » 9.22

Вычислим энергию суммы двух произвольных сигналов u(t) и v(t):

E =[u(t)+v(t)] 2 dt = Eu + Ev + 2u(t)v(t) dt. (2.13)

Как следует из этого выражения, энергия сигналов (а равно и их мощность), в отличие от самих сигналов, в общем случае не обладают свойством аддитивности. Энергия суммарного сигнала u(t)+v(t), кроме суммы энергий составляющих сигналов, содержит в себе и так называемую энергию взаимодействия сигналов или взаимную энергию:

Euv = 2u(t)v(t) dt. (2.14)

Нетрудно заметить, что энергия взаимодействия сигналов равна их удвоенному скалярному произведению:

При обработке данных используются также понятия мощности взаимодействия двух сигналов x(t) и y(t):

Для вещественных сигналов:

С использованием выражений (2.15-2.16) интегрированием по соответствующим интервалам вычисляются значения средней мощности взаимодействия сигналов на определенных интервалах Т и энергия взаимодействия сигналов.

Дата добавления: 2014-01-03 ; Просмотров: 3981 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Математик может говорить все, что взбредет ему в голову, но физик обязан сохранять хотя бы крупицу здравого смысла.
Джосайя Гиббс. Американский физик, XIX в.

Содержание: Введение. 7.1. Мощность и энергия сигналов. 7.2. Энергетические спектры сигналов. Скалярное произведение сигналов. Взаимный энергетический спектр. Энергетический спектр сигнала. Литература.

введение

Понятия мощности и энергии в теории сигналов не относятся к характеристикам каких-либо физических величин сигналов, а являются их количественными характеристиками, отражающими определенные свойства сигналов и динамику изменения их значений во времени, в пространстве или по любым другим аргументам.

Для произвольного, в общем случае комплексного, сигнала мгновенная мощность по определению равна квадрату функции его модуля, для вещественных сигналов — квадрату функции амплитуд. Энергия сигнала, также по определению, равна интегралу от мощности по всему интервалу существования или задания сигнала.

Энергия сигналов может быть конечной или бесконечной. Конечную энергию имеют финитные сигналы и сигналы, затухающие по своим значениям в пределах конечной длительности, которые не содержат дельта-функций и особых точек (разрывов второго рода и ветвей, уходящих в бесконечность). В противном случае их энергия равна бесконечности. Бесконечна также энергия периодических сигналов.

7.1. Мощность и энергия сигналов [1,3,16].

Частотное представление применяется не только для спектрального анализа сигналов, но и для упрощения вычислений энергии сигналов и их корреляционных характеристик.

Как уже рассматривалось ранее, для произвольного сигнала s(t) = a(t)+jb(t), где а(t) и b(t) — вещественные функции, мгновенная мощность сигнала (плотность распределения энергии) определяется выражением:

w(t) = s(t)s*(t) = a 2 (t)+b 2 (t) = |s(t)| 2 .

Энергия сигнала равна интегралу от мощности по всему интервалу существования сигнала. В пределе:

Читайте также:  Перспектива социальная сеть работников образования

Е s =w(t)dt =|s(t)| 2 dt.

По существу, мгновенная мощность является плотностью мощности сигнала, так как измерения мощности возможны только через энергию, выделяемую на определенных интервалах ненулевой длины:

w( t ) = (1/ D t)|s(t)| 2 dt .

Сигнал s(t) изучается, как правило, на определенном интервале Т (для периодических сигналов — в пределах одного периода Т), при этом средняя мощность сигнала:

W T ( t ) = (1/T)w(t) dt = (1/T)|s(t)| 2 dt.

Понятие средней мощности может быть распространено и на незатухающие сигналы, энергия которых бесконечно велика. В случае неограниченного интервала Т строго корректное определение средней мощности сигнала производится по формуле:

W s = w(t) dt.

Энергия и норма сигналов связаны соотношениями:

E s = ||s(t)|| 2 , ||s|| = .

7.2. Энергетические спектры сигналов [1].

Скалярное произведение сигналов. Энергия суммы двух произвольных сигналов u(t) и v(t) определяется выражением :

E = [u(t)+v(t)] 2 dt = E u + E v + 2u(t)v(t) dt. (7.2.1)

Как следует из этого выражения, энергии сигналов, в отличие от самих сигналов, в общем случае не обладают свойством аддитивности. Энергия суммарного сигнала u(t)+v(t), кроме суммы энергий составляющих сигналов, содержит в себе и так называемую энергию взаимодействия сигналов или взаимную энергию :

E uv = 2u(t)v(t) dt. (7.2.2)

Интеграл выражения (7.2.2) для двух вещественных сигналов является фундаментальной характеристикой, пропорциональной взаимной энергии сигналов. Его называют скалярным произведением сигналов :

П uv = (u(t),v(t)) =u(t)v(t) dt = ||u|| Ч ||v|| cos j , (7.2.3)

Скалярное произведение обладает следующими свойствами :

(au,v) = a(u,v), где а – вещественное число;

Линейное пространство сигналов с таким скалярным произведением называется гильбертовым пространством Н. С учетом того, что cos j Ј 1, в гильбертовом пространстве справедливо неравенство Коши-Буняковского :

|П uv | Ј ||u|| Ч ||v||. (7.2.4)

Для комплексного гильбертова пространства скалярное произведение также представляет собой вещественное число и вычисляется по формуле :

П uv =u(t)v*(t) dt є u*(t)v(t) dt. (7.2.3′)

Из выражения (7.2.3) следует, что косинус угла между сигналами :

cos j = П uv / (||u|| Ч ||v||). (7.2.5)

При полной тождественности сигналов (равенстве амплитуд и временных координат) имеем j = 0, cos j = 1, и скалярное произведение становится равным энергии сигналов:

П uv = u(t) 2 dt є v(t) 2 dt є ||u|| 2 є ||v|| 2 .

Дискретные сигналы обычно рассматриваются в пространстве Евклида (обозначение пространства — R 2 ). Скалярное произведение двух сигналов в пространстве Евклида:

П uv = (u k ,v k ) =u k v k ,

где n — размерность пространства.

Взаимный энергетический спектр. Из очевидной однозначности энергии взаимодействия сигналов независимо от формы их математического представления (в динамической и частотной модели) следует выражение для скалярного произведения произвольных вещественных сигналов u(t) и v(t) через спектральные плотности сигналов U( w ) и V( w ) в комплексном гильбертовом пространстве:

П uv = (1/2 p )U( w )V*( w ) d w є (1/2 p )U*( w )V( w ) d w . (7.2.6)

W uv ( w ) = U( w )V*( w ), W vu ( w ) = U*( w )V( w ), W uv ( w ) = W vu * ( w ), (7.2.7)

для которых справедливо выражение (7.2.6), называется взаимными энергетическими спектрами вещественных сигналов, и являются функциями распределения плотности энергии взаимодействия сигналов (мощности взаимодействия) по частоте.

В общем случае, за исключением спектров четных функций, взаимные энергетические спектры также являются комплексными функциями:

U( w ) = A u ( w ) + j B u ( w ), V( w ) = A v ( w ) + j B v ( w ).

W uv = A u A v +B u B v +j (B u A v — A u B v ) = Re W uv (w) + j Im W uv ( w ). (7.2.7′)

С учетом четности реальной части и нечетности мнимой части энергетических спектров, интеграл мнимой части выражения (7.2.7′) равен нулю, а, следовательно, скалярное произведение сигналов всегда является вещественным и неотрицательным, как и энергия сигналов:

П uv = (1/2 p )W uv ( w ) d w є (1/ p )Re W uv ( w ) d w. (7 .2.8)

Рис. 7.2.1. Форма и энергетические спектры сигналов.

На рис. 7.2.1 приведена форма двух одинаковых сдвинутых во времени и частично перекрывающихся лапласовских импульсов u(t) и v(t), а также суммарный импульс z(t)=u(t)+v(t). Плотности энергии сигналов W(f) приведены в относительных единицах плотности энергии суммарного сигнала W z (f) на нулевой частоте.

Как видно из графиков, плотности энергии сигналов являются вещественными неотрицательными функциями и содержат только реальные части. В отличие от них, плотность взаимной энергии сигналов является комплексной функцией, при этом модуль плотности по своим значениям на шкале частот соизмерим со средними значениями плотности энергии сигналов на этих частотах и не зависит от их взаимного расположения на временной оси. Для сигналов, одинаковых по форме, модуль взаимной плотности равен значениям плотности энергии сигналов.

Рис. 7.2.2. Взаимные энергетические спектры сигналов.

На рис. 7.2.2 приведены плотности взаимной энергии тех же сигналов при разной величине временного сдвига D t между сигналами. Однако при постоянном значении модуля взаимной энергии сигналов действительная и мнимая функции спектра мощности существенно изменяются при изменении сдвига между сигналами. При незначительной величине временного перекрытия сигналов частота осцилляций реальной и мнимой части плотности взаимной энергии достаточно велика, а относительный коэффициент затухания колебаний (уменьшение амплитудных значений от периода к периоду) достаточно мал. Соответственно, при вычислении скалярного произведения по формуле (7.2.8) положительные амплитудные значения осцилляций Re(W uv ) практически полностью компенсируются отрицательными значениями и результирующий интеграл, а равно и энергия взаимодействия сигналов (удвоенное значение скалярного произведения), близка к нулевой (стремится к нулю по мере увеличения сдвига между сигналами).

Читайте также:  Назовите издателя и разработчика игры братья пилоты

При увеличении степени взаимного перекрытия сигналов частота осцилляций плотности взаимной энергии уменьшается ( D t = 50 mkc на рис. 7.2.2) и основным по энергии реальной части спектра становится центральный низкочастотный пик, площадь которого не компенсируется площадью последующей отрицательной полуволны осцилляции. Соответственно, возрастает и энергия взаимодействия сигналов. При полном перекрытии сигналов (при нулевом фазовом угле между сигналами) осцилляции исчезают, и энергия взаимодействия сигналов максимальна.

Энергетический спектр сигнала. Если функция s(t) имеет фурье-образ S( w ), то плотность мощности сигнала ( спектральная плотность энергии сигнала ) определяется выражением:

w(t) = s(t)s*(t) = |s(t)| 2 Ы |S( w )| 2 = S( w )S*( w ) = W( w ). (7.2.9)

Спектр мощности W( w ) — вещественная неотрицательная четная функция, которую обычно называют энергетическим спектром . Спектр мощности, как квадрат модуля спектральной плотности сигнала, не содержит фазовой информации о его частотных составляющих, а, следовательно, восстановление сигнала по спектру мощности невозможно. Это означает также, что сигналы с различными фазовыми характеристиками могут иметь одинаковые спектры мощности. В частности, сдвиг сигнала не отражается на его спектре мощности. Последнее позволяет получить выражение для энергетического спектра непосредственно из выражений (7.2.7). В пределе, для одинаковых сигналов u(t) и v(t) при сдвиге D t Ю 0, мнимая часть спектра W uv ( w ) стремится к нулевым значениям, а реальная часть – к значениям модуля спектра. При полном временном совмещении сигналов имеем:

W uv ( w ) = U( w )V*( w ) = U( w )U*( w ) = |U( w )| 2 = W u ( w ). (7.2.10)

Соответственно, полная энергия сигнала:

Е u =u(t) 2 dt = (1/2 p )W u (t)dt = (1/2 p )|U( w )| 2 d w , (7.2.11)

т.е. энергия сигнала равна интегралу квадрата модуля его частотного спектра — сумме энергии его частотных составляющих, и всегда является вещественной величиной.

Для произвольного сигнала s(t) равенство

|s(t)| 2 dt =|S(f)| 2 df

обычно называют равенством Парсеваля (в математике – теоремой Планшереля, в физике – формулой Релея). Равенство очевидно, так как координатное и частотное представления по существу только разные математические отображения одного и того же сигнала. Аналогично для энергии взаимодействия двух сигналов:

u(t) v*(t) dt =U(f) V*(f) df.

Из равенства Парсеваля следует инвариантность скалярного произведения сигналов и нормы относительно преобразования Фурье:

В целом ряде чисто практических задач регистрации и передачи сигналов энергетический спектр сигнала имеет весьма существенное значение.

Периодические сигналы переводятся в спектральную область в виде рядов Фурье. Запишем периодический сигнал с периодом Т в виде ряда Фурье в комплексной форме:

s(t) =S k exp(j2 p kt/T),

и вычислим среднюю мощность сигнала за один период:

W T = (1/T)s 2 (t) dt = (1/T)S k S m exp(j2 p( k+m)t/T) dt.

Интервал 0-Т содержит целое число периодов всех подынтегральных экспонент, и равен нулю, за исключением экспоненты при k = -m, для которой интеграл равен Т. Соответственно, средняя мощность периодического сигнала равна сумме квадратов модулей коэффициентов его ряда Фурье:

W T =|S k | 2 .

Как правило, спектры сигналов с крутыми фронтами (например, кодовых сигналов при передаче цифровых данных) являются многолепестковыми с постепенным затуханием энергии в последовательных лепестках. Пример нормированного энергетического спектра прямоугольного импульса длительностью t и приведен на рис. 7.2.3. Спектры выполнены в линейном (сплошная линия) и логарифмическом (пунктир) масштабе по оси значений. Для четкого разделения лепестков функции спектров приведены по безразмерной частотной переменной f Ч t и .

Интегрированием энергетического спектра по интервалам лепестков спектра нетрудно вычислить, что в пределах первого лепестка сосредоточено 90.2% энергии всего сигнала, в пределах второго – 4.8%, в пределах третьего – 1.7%, и т.д. Если форма сигналов в пункте их приема (детектирования) существенного значения не имеет, а регистрация сигналов идет на уровне статистических шумов, равномерно распределенных по всему частотному диапазону, то такие сигналы целесообразно пропускать через фильтр нижних частот с выделением только первого энергетического лепестка сигнала. Естественно, что при этом фронты регистрируемого сигнала будут сглажены. Но при расширении полосы пропускания фильтра на два или три лепестка энергия принимаемого сигнала будет увеличена соответственно на 4.8 или 6.5%, в то время как энергия шумов в 2 или 3 раза.

1. Баскаков С.И. Радиотехнические цепи и сигналы : Учебник для вузов. — М. : Высшая школа, 1988.

3. Васильев Д.В. Радиотехнические цепи и сигналы: Учебное пособие для вузов. — М.: Радио и связь, 1982. — 528 с.

16. Макс Ж. Методы и техника обработки сигналов при физических измерениях. — М.: Мир, 1983.

Ссылка на основную публикацию
Шарик равноускоренно скатывается по наклонной плоскости
За каждую секунду, путь пройденный шариком,увеличивается на 20см. Следовательно за 4 секунду он пройдет 70см. Ответ:(2) Если ответ по предмету...
Что такое ogg формат
Ogg — Dateiendung: .ogg, .oga, .ogv, .ogx MIME Type … Deutsch Wikipedia .ogg — Dateiendung .ogg, .oga, .ogv, .ogx MIME...
Что такое pppoe соединение на роутере
PPPoE (англ. Point-to-point protocol over Ethernet ) — сетевой протокол канального уровня (второй уровень сетевой модели OSI) передачи кадров PPP...
Шарнирная стойка для дрели
Стойка для дрели с тисками FIT 37861 Стойка для дрели Калибр 96203 Стойка для дрели RedVerg DS-43 Стойка для дрели...
Adblock detector