Что такое частота dram

Что такое частота dram

– Быстрее, еще быстрее, ну ускорься, пожалуйста, хоть немного, а то меня сейчас…

– Не могу, дорогой Геймер, ведь я достигла своей предельной тактовой частоты.

Примерно так мог бы выглядеть диалог не слишком быстрой оперативной памяти и Геймера, у которого на счету каждая доля секунды.

Тактовая частота оперативной памяти (ОЗУ, RAM) – второй по значимости параметр после объема. Чем она выше, тем быстрее происходит обмен данными между процессором и ОЗУ, тем шустрее работает компьютер. Оперативка с низкими тактами может стать «бутылочным горлом» в ресурсоемких играх и программах. И если вы не хотите каждый раз упрашивать капризную железку немного прибавить скорость, при покупке всегда обращайте внимание на эту характеристику. Сегодня поговорим, как узнать частоту оперативной памяти по описанию в каталогах магазинов, а также той, что установлена на вашем ПК.

Как понять, что за «зверя» предлагает магазин

  • DDR3, 12800 Мб/с.
  • DDR3, PC12800.
  • DDR3, 800 МГц (1600 МГц).
  • DDR3, 1600 МГц.

Кто-то подумает, что речь в этом примере идет о четырех разных планках. На самом деле так можно описать один и тот же модуль RAM с эффективной частотой 1600 МГц! И все эти числа косвенно или прямо указывают на нее.

Чтобы больше не путаться, разберемся, что они означают:

  • 12800 Мб/с – это пропускная способность памяти, показатель, получаемый путем умножения эффективной частоты (1600 МГц) на разрядность шины одного канала (64 бит или 8 байт). Пропускная способность описывает максимальное количество информации, которое модуль RAM способен передавать за один такт. Как определить по ней эффективную частоту, думаю, понятно: нужно 12800 разделить на 8.
  • PC12800 или PC3-12800 – другое обозначение пропускной способности модуля RAM. Кстати, у комплекта из двух планок, предназначенного к использованию в двухканальном режиме, пропускная способность в 2 раза выше, поэтому на его этикетке может стоять значение PC25600 или PC3-25600.
  • 800 МГц (1600 МГц) – два значения, первое из которых указывает на частотность шины самой памяти, а второе – в 2 раза большее – на ее эффективную частоту. Чем отличаются показатели? В компьютерах, как вы знаете, используется ОЗУ типа DDR – с удвоенной скоростью передачи данных без увеличения количества тактов шины, то есть за 1 такт через нее передается не одна, а две условные порции информации. Поэтому основным показателем принято считать эффективную тактовую частоту (в данном примере – 1600 МГц).

На скриншоте ниже показано описание скоростных характеристик оперативки из каталогов трех компьютерных магазинов. Как видно, все продавцы обозначают их по-своему.

Разные модули ОЗУ в рамках одного поколения – DDR, DDR2, DDR3 или DDR4, имеют разные частотные характеристики. Так, самая распространенная на 2017 год RAM DDR3 выпускается с частотностью 800, 1066, 1333, 1600, 1866, 2133 и 2400 МГц. Иногда ее так и обозначают: DDR3-1333, DDR3-1866 и т. д. И это удобно.

Собственную эффективную частоту имеет не только оперативка, но и устройство, которое ею управляет – контроллер памяти. В современных компьютерных системах, начиная с поколения Sandy Bridge, он входит в состав процессора. В более старых – в состав компонентов северного моста материнской платы.

Если на компьютере установлено несколько планок ОЗУ с разными частотными характеристиками, подсистема памяти будет вести обмен данными со скоростью самого медленного звена (исключение – устройства с поддержкой технологии XMP ). Так, если частота контроллера составляет 1333 МГц, одной из планок – 1066 МГц, а другой – 1600 МГц, передача будет идти на скорости 1066 МГц.

Как узнать частоту оперативки на компьютере

Данные SPD умеют читать и программы, Например, широко известная утилита CPU-Z , один из разделов которой так и называется – «SPD». На скриншоте далее мы видим уже знакомые характеристики скорости планки оперативки (поле «Max Bandwidth») – PC3-12800 (800 MHz). Чтобы узнать ее эффективную частоту, достаточно разделить 12800 на 8 или 800 умножить на 2. В моем примере этот показатель равен 1600 MHz.

Однако в CPU-Z есть еще один раздел – «Memory», а в нем – параметр «DRAM Frequency», равный 665,1 MHz. Это, как вы, наверное, догадались, фактические данные, то есть частотный режим, в котором в действительности функционирует ОЗУ. Если мы умножим 665,1 на 2, то получим 1330,2 MHz – значение, близкое к 1333 – частоте, на которой работает контроллер памяти этого ноутбука.

Помимо CPU-Z, аналогичные данные показывает и другие приложения, служащие для распознавания и мониторинга железа ПК. Ниже приведены скриншоты бесплатной утилиты HWiNFO32/64 :

И платной, но горячо любимой российскими пользователями AIDA64 :

Где и что смотреть, думаю, понятно.

Наконец, последний способ узнать частоту оперативной памяти – это чтение этикетки, приклеенной к самой планке.

Если вы прочитали статью сначала, вам не составит труда найти в этих строчках нужные сведения. В примере, показанном выше, интересующий показатель составляет 1600 MHz и скрывается в слове “PC3L-12800s”.

BIOS представляет собой комплекс микропрограмм, что направлены на полноценное обеспечение взаимодействия аппаратных компонентов ПК. Визуализированный интерфейс BIOS подлежит тонкой настройке, осуществить которую может, как специалист, так и рядовой пользователь ПК, занявшийся самообучением по данному направлению.

Одна из опциональных настроек носит название DRAM Frequency и размещается в меню Advanced. В зависимости от версии BIOS он так же может именоваться, как Memory Frequency, DRAM Clock By, MEM Clock Setting и т.д. Рассмотрим данную опцию для понимая: DRAM Frequency что это и как её использовать.

Суть опции DRAM Frequency

Этот элемент конфигурации BIOS используется достаточно часто, поскольку отвечает за важнейший параметр – частоту динамического ОЗУ или говоря проще — оперативной памяти. Осуществляя настройку посредством опции DRAM Frequency можно изменить частоту работы микросхем ОЗУ.

Читайте также:  Интернет магазин поиск по фото

Принцип действия

На программном уровне ОЗУ – это специальная память ПК, в которой хранятся данные о работе ПО в текущей сессии. Аппаратное представление оперативной памяти – это небольшие планки с паянными микросхемами, среди которых и расположились упомянутые ячейки памяти. Подключаются такие планки в специальные разъемы материнской платы ПК.

Вот так выглядит модуль оперативной памяти

Память имеет динамический формат – при своём низком уровне быстродействия она требует постоянного обновления хранимых данных. Современный стандарт ОЗУ именуется DDR (Double Data Rate). Производители увеличили их пропускную способность и обеспечили синхронность взаимодействия с остальными элементами ПК.

Частота работы ОЗУ предопределяется производительность данного элемента. Стоит говорить о реальной и эффективной частотах работы шины памяти на материнской плате:

  • реальная – число импульсов, создаваемых токовым генератором;
  • эффективная – частота работы, что соответствует скорости выполнения операций модулями памяти (она значительно выше реальной).

Значения этого параметра увеличиваются с каждым новым поколением устройств, выпускаемых в рамках формата DDR. Так, если стандарт DDR отличался диапазоном частот от 200 до 400 МГц, то в новейшем DDR 4 эти значения варьируются от 1600 до 2400 МГц с возможностью разгона до 3200 МГц.

Ручная настройка

Итак, остаётся понять, какое же значение DRAM Frequency должно быть выбрано при настройке BIOS. Оптимальный вариант – установка значения «AUTO», что позволит BIOS самостоятельно определить подходящую для эффективной работы частоту ОЗУ.

Оптимальное значение для параметра DRAM Frequency — AUTO

В отдельных случаях это может привести к установлению значения меньшего, чем номинальное для используемых планок памяти. Тогда стоит изменить автоматическое определение на значение «by SPD» или вручную выставить подходящую частоту

Внимание! Слишком низкое или высокое значение частоты ОЗУ может привести к критическим ошибкам в работе этого компонента. Потому любые изменения параметра DRAM Frequency должны тестироваться. Возникновение неполадок является поводом для скорейшего восстановления начальных/стандартных значений.

DRAM (англ. dynamic random access memory — динамическая память с произвольным доступом) — тип компьютерной памяти, отличающийся использованием полупроводниковых материалов, энергозависимостью и возможностью доступа к данным, хранящимся в произвольных ячейках памяти (см. запоминающее устройство с произвольным доступом). Модули памяти с памятью такого типа широко используются в современных компьютерах в качестве оперативных запоминающих устройств (ОЗУ), также используются в качестве устройств постоянного хранения информации в системах, требовательных к задержкам.

Физически DRAM состоит из ячеек, созданных в полупроводниковом материале в виде емкости. Заряженная или разряженная емкость хранит бит данных. Каждая ячейка такой памяти имеет свойство разряжаться (из-за токов утечки и пр.), поэтому их постоянно надо подзаряжать — отсюда название «динамическая» (динамически подзаряжать). Совокупность ячеек образует условный «прямоугольник», состоящий из определённого количества строк и столбцов. Один такой «прямоугольник» называется страницей, а совокупность страниц называется банком. Весь набор ячеек условно делится на несколько областей.

Как запоминающее устройство (ЗУ) DRAM представляет собой модуль памяти какого-либо конструктивного исполнения, состоящий из печатной платы, на которой расположены микросхемы памяти, и разъёма, необходимого для подключения модуля к материнской плате.

Содержание

История [ править | править код ]

Впервые динамическая память была реализована в дешифровальной машине «Aquarius», использовавшейся во время второй мировой войны в правительственной школе кодов и шифров в Блетчли-парк. Считываемые с бумажной ленты символы «запоминались в динамическом хранилище. … Хранилище представляло собой блок конденсаторов, которые были либо заряжены, либо разряжены. Заряженный конденсатор соответствовал символу „X“ (логической единице), разряженный — символу „.“ (логическому нулю). Поскольку конденсаторы теряли заряд из-за утечки, на них периодически подавался импульс для подзарядки (отсюда термин динамическая)» [1] .

В 1966 году учёный Роберт Деннард из исследовательского центра имени Томаса Уотсона компании IBM изобрёл современную память DRAM. В 1968 году Деннарду был выдан патент США под номером 3387286. Конденсаторы использовались в более ранних конструкциях памяти, таких как барабан компьютера Атанасова — Берри, трубках Уильямса и селектронах.

Первой микросхемой динамической памяти стала Intel 1103 (англ.) русск. объёмом 1 кБит, выпущенная в продажу в октябре 1970 года.

Принцип действия [ править | править код ]

На физическом уровне память DRAM представляет собой набор ячеек, способных хранить информацию. Ячейки состоят из конденсаторов и транзисторов, расположенных внутри полупроводниковых микросхем памяти [2] . Конденсаторы заряжают при записи в ячейку единичного бита и разряжают при записи в ячейку нулевого бита.

При прекращении подачи электроэнергии конденсаторы разряжаются, и память обнуляется (опустошается). Для поддержания необходимого напряжения на обкладках конденсаторов (для сохранения данных) конденсаторы необходимо периодически подзаряжать . Подзарядку выполняют путём подачи на конденсаторы напряжения через коммутирующие транзисторные ключи. Необходимость постоянной зарядки конденсаторов (динамическое поддержание заряда конденсаторов) является основополагающим принципом работы памяти типа DRAM.

Важным элементом памяти типа DRAM является чувствительный усилитель-компаратор (англ. sense amp ), подключённый к каждому из столбцов «прямоугольника». При чтении данных из памяти усилитель-компаратор реагирует на слабый поток электронов, устремившихся через открытые транзисторы с обкладок конденсаторов, и считывает одну строку целиком. Чтение и запись выполняются построчно; обмен данными с отдельно взятой ячейкой невозможен.

Регенерация [ править | править код ]

В отличие от статической памяти (памяти типа SRAM (англ. static random access memory ), конструктивно более сложной, более дорогой, более быстрой и применяемой в основном в кеш-памяти), медленная, но дешёвая динамическая память (DRAM) изготавливается на основе конденсаторов небольшой ёмкости. Такие конденсаторы быстро теряют заряд, поэтому во избежание потерь хранимых данных конденсаторы приходится подзаряжать через определённые промежутки времени. Этот процесс называется регенерацией памяти, осуществляется специальным контроллером, установленным либо на материнской плате, либо на кристалле центрального процессора. На протяжении времени, называемого шагом регенерации, в DRAM перезаписывается целая строка ячеек, и через 8—64 мс обновляются все строки памяти.

Читайте также:  Переводчик голосовой ввод текста гугл

Процесс регенерации памяти в классическом варианте существенно тормозит работу системы, поскольку во время его осуществления обмен данными с памятью невозможен. Регенерация, основанная на обычном переборе строк, в современных типах DRAM не применяется. Существует несколько более экономичных вариантов этого процесса: расширенный, пакетный, распределённый. Наиболее экономичной является скрытая (теневая) регенерация.

Среди новых технологий регенерации — PASR (англ. partial array self refresh ), применяемая некоторыми компаниями в чипах памяти SDRAM, отличающихся низким уровнем энергопотребления. Регенерация ячеек выполняется только в период ожидания в тех банках памяти, в которых имеются данные. Одновременно с этой технологией применяется технология TCSR (англ. temperature compensated self refresh ), предназначенная для регулирования периода регенерации в зависимости от рабочей температуры.

Характеристики DRAM [ править | править код ]

Основными характеристиками DRAM являются рабочая частота и тайминги.

Перед обращением к ячейке памяти контроллер памяти передаёт модулю памяти номер банка, номер страницы банка, номер строки страницы и номер столбца страницы; на эти запросы тратится время. До и после выполнения чтения или записи довольно большой промежуток времени уходит на «открытие» и «закрытие» банка. На каждое действие требуется время, называемое таймингом.

Основными таймингами DRAM являются:

  • задержка между подачей номера строки и номера столбца, называемая временем полного доступа (англ. RAS to CAS delay );
  • задержка между подачей номера столбца и получением содержимого ячейки, называемая временем рабочего цикла (англ. CAS delay );
  • задержка между чтением последней ячейки и подачей номера новой строки (англ. RAS precharge ).

Тайминги измеряются в наносекундах или тактах. Чем меньше величина тайминга, тем быстрее будет работать оперативная память.

Типы DRAM [ править | править код ]

На протяжении долгого времени разработчики создавали различные типы DRAM с использованием различных технических решений. Основной движущей силой такого развития были стремление увеличить быстродействие и объём оперативной памяти.

PM DRAM [ править | править код ]

PM DRAM (англ. page mode DRAM — страничная DRAM) — один из первых типов DRAM. Память такого типа выпускалась в начале 1990-х годов. С ростом производительности процессоров и ресурсоёмкости приложений требовалось увеличивать не только объём памяти, но и скорость её работы.

FPM DRAM [ править | править код ]

FPM DRAM (англ. fast page mode DRAM — быстрая страничная DRAM) — тип DRAM, основанный PM DRAM и отличающийся повышенным быстродействием. Память такого типа работала также, как память типа PM DRAM, а увеличение скорости работы достигалось путём повышения нагрузки на аппаратную часть памяти (доступ к данным на той же странице осуществлялся с меньшей задержкой [3] ). Память такого типа была популярна в первой половине 1990-х годов, а в 1995 году [4] занимала 80 % рынка компьютерной памяти. Применялась в основном для компьютеров с процессорами Intel 80486 или аналогичных процессоров других фирм. Могла работать на частотах 25 и 33 МГц с временем полного доступа 70 и 60 нс и с временем рабочего цикла 40 и 35 нс соответственно. В 1996—1997 годах была вытеснена памятью EDO DRAM и SDR SDRAM. В 1997 году доля FPM DRAM на рынке упала до 10 % [4] [5] .

EDO DRAM [ править | править код ]

EDO DRAM (англ. extended data out DRAM — DRAM с усовершенствованным выходом) — тип DRAM, созданный для замены FPM DRAM ввиду неэффективности FPM DRAM при работе с процессорами Intel Pentium. Память такого типа появилась на рынке в 1996 году. Использовалась на компьютерах с процессорами Intel Pentium и выше. По производительности на 10—15 % обгоняла FPM DRAM. Работала на частотах 40 и 50 МГц с времем полного доступа — 60 и 50 нс и с времем рабочего цикла — 25 и 20 нс соответственно. Содержала регистр-защёлку (англ. data latch ) выходных данных, что обеспечивало некоторую конвейеризацию работы для повышения производительности при чтении.

SDR SDRAM [ править | править код ]

SDR SDRAM (англ. single data rate synchronous DRAM — синхронная DRAM одиночной частоты) — тип DRAM, созданный для замены EDO DRAM в связи с понижением стабильности работы EDO DRAM с новыми процессорами и повышением рабочих частот системных шин. Новыми особенностями памяти этого типа стали использование тактового генератора для синхронизации всех сигналов и использование конвейерной обработки информации. Память такого типа надёжно работала на частотах системной шины 100 МГц и выше.

Если для памяти FPM DRAM и EDO DRAM указывалось время чтения данных из первой ячейки в цепочке (время доступа), то для SDRAM указывалось время чтения данных из последующих ячеек. Цепочка — несколько ячеек, расположенных последовательно. На чтение данных из первой ячейки уходило 60—70 нс независимо от типа памяти, а время чтения последующих ячеек зависело от типа памяти. Рабочие частоты SDRAM могли быть равны 66, 100 или 133 МГц, время полного доступа — 40 и 30 нс, а время рабочего цикла — 10 и 7,5 нс.

Совместно с памятью SDRAM применялась технология VCM (англ. virtual channel memory ). VCM использует архитектуру виртуального канала, позволяющую более гибко и эффективно передавать данные с использованием каналов регистра на чипе. Данная архитектура интегрирована в SDRAM. Применение VCM повышало скорость передачи данных. Модули памяти SDRAM, поддерживающие и не поддерживающие VCM, были совместимы, что позволяло обновлять системы без значительных затрат и модификаций. Это решение нашло поддержку у некоторых производителей чипсетов.

Читайте также:  Питон 3 для начинающих

ESDRAM [ править | править код ]

ESDRAM (англ. enhanced SDRAM ) — тип DRAM, созданный для решения некоторых проблем с задержкой сигнала, присущих стандартной DRAM. Память такого типа отличалась наличием в чипе небольшого количества SRAM, то есть наличием кеша. По существу, представляла собой SDRAM с небольшим количеством SRAM. Кеш использовался для хранения и выборки наиболее часто используемых данных, за счёт чего достигалось уменьшение времени доступа к данным медленной DRAM. Память такого типа выпускалась, например, фирмой «Ramtron International Corporation». При малых задержках и пакетной работе могла работать на частотах до 200 МГц.

BEDO DRAM [ править | править код ]

BEDO DRAM (англ. burst EDO DRAM — пакетная EDO RAM) — тип DRAM, основанный на EDO DRAM и отличающийся поддержкой технологии поблочного чтения данных (блок данных читался за один такт). Модули памяти такого типа за счёт поблочного чтения работали быстрее SDRAM, стали дешёвой альтернативой SDRAM, но из-за неспособности работать на частотах системной шины, превышающих 66 МГц, не стали популярными.

VRAM [ править | править код ]

VRAM (англ. video RAM ) — тип DRAM, разработанный на основе SDRAM специально для использования в видеоплатах. Память такого типа благодаря некоторым техническим изменениям по производительности обгоняла SDRAM на 25 %. Позволяла обеспечить непрерывный поток данных в процессе обновления изображения, что было необходимо для реализации возможности показа изображений высокого качества. Стала основой памяти типа WRAM (англ. windows RAM ), которую иногда ошибочно связывают с операционными системами семейства Windows.

DDR SDRAM [ править | править код ]

DDR SDRAM (англ. double data rate SDRAM , SDRAM или SDRAM II) — тип DRAM, основанный на SDR SDRAM и отличающийся удвоенной скоростью передачи данных (удвоенной пропускной способностью). Память такого типа первоначально применялась в видеоплатах, позднее стала использоваться и на чипсетах.

У предыдущих версий DRAM линии адреса, данных и управления, которые накладывают ограничения на скорость работы устройств, были разделены. Для преодоления этого ограничения в некоторых технологических решениях все сигналы стали передавать по одной шине. Двумя из таких решений стали DRDRAM и SLDRAM (открытый стандарт). Памяти типа SLDRAM, подобно предыдущей [ какой? ] технологии, использует оба перепада тактового сигнала. Что касается интерфейса, то SLDRAM перенимает протокол, названный SynchLink Interface, и стремится работать на частоте 400 МГц.

Рабочие частоты памяти типа DDR SDRAM — 100, 133, 166 и 200 МГц, время полного доступа — 30 и 22,5 нс, а время рабочего цикла — 5, 3,75, 3 и 2,5 нс.

Так как частота синхронизации лежит в пределах от 100 до 200 МГц, а данные передаются по 2 бита на один синхроимпульс, как по фронту, так и по спаду тактового импульса, то эффективная частота передачи данных лежит в пределах от 200 до 400 МГц. Модули памяти, работающие на таких частотах, обозначают «DDR200», «DDR266», «DDR333», «DDR400».

RDRAM [ править | править код ]

RDRAM (англ. Rambus DRAM ) — тип DRAM, разработанный компанией Rambus. Память такого типа отличалась высоким быстродействием за счёт ряда особенностей, не встречающихся в памяти других типов. Работала на частотах 400, 600 и 800 МГц с временем полного доступа до 30 нс и временем рабочего цикла до 2,5 нс. Первоначально стоила очень дорого, из-за чего производители мощных компьютеров предпочли менее производительную и более дешёвую DDR SDRAM.

DDR2 SDRAM [ править | править код ]

DDR2 SDRAM — тип DRAM, основанный на DDR SDRAM и выпущенный в 2004 году. Память такого типа по сравнению с DDR SDRAM за счёт технических изменений обладала более высоким быстродействием. Предназначалась для использования на современных компьютерах. Работала на тактовых частотах шины 200, 266, 333, 337, 400, 533, 575 и 600 МГц. При этом эффективная частота передачи данных могла составлять 400, 533, 667, 675, 800, 1066, 1150 и 1200 МГц. Некоторые производители модулей памяти, помимо модулей, работающих на стандартных частотах, выпускали модули, работающие на нестандартных (промежуточных) частотах; такие модули предназначались для использования в разогнанных системах, где требовался запас по частоте. Время полного доступа — 25, 11,25, 9, 7,5 нс и менее. Время рабочего цикла — от 5 до 1,67 нс.

DDR3 SDRAM [ править | править код ]

DDR3 SDRAM — тип DRAM, основанный на DDR2 SDRAM, отличающийся удвоенной частотой передачи данных по шине памяти и пониженным энергопотреблением. Память такого типа обеспечивает большую пропускную способность по сравнению с ранее существовавшими типами памяти. Работает на частотах полосы пропускания в пределах от 800 до 2400 МГц (рекорд частоты — более 3000 МГц).

DDR4 SDRAM [ править | править код ]

DDR4 SDRAM (англ. DDR four SDRAM ) — тип DRAM, основанный на технологиях предыдущих поколений DDR и отличающийся повышенными частотными характеристиками, пониженным напряжением питания.

Основное отличие DDR4 от предыдущего стандарта (DDR3) заключается в удвоенном до 16 числе банков (в двух группах банков, что позволило увеличить скорость передачи). Пропускная способность памяти DDR4 в перспективе может достигать 25,6 ГБ/c (в случае повышения максимальной эффективной частоты до 3200 МГц). Надёжность работы DDR4 повышена за счёт введения механизма контроля чётности на шинах адреса и команд. Изначально в стандарте DDR4 был определён диапазон частот от 1600 до 2400 МГц с возможностью увеличения до 3200 МГц.

Массовое производство ECC-памяти DDR4 началось со второго квартала 2014 года, а в следующем квартале начались продажи non-ECC модулей DDR4 вместе с процессорами Intel Haswell-E/Haswell-EP, требующими DDR4.

Ссылка на основную публикацию
Что такое ogg формат
Ogg — Dateiendung: .ogg, .oga, .ogv, .ogx MIME Type … Deutsch Wikipedia .ogg — Dateiendung .ogg, .oga, .ogv, .ogx MIME...
Что значит включена переадресация вызова когда звонишь
Что такое переадресация звонков? Что значит «Переадресация звонков»? Данная услуга позволяет всегда оставаться на связи, за счёт перенаправления исходящих звонков....
Что значит восьмиядерный процессор
Дизайн и эргономика важны для гаджетов, но в то же время каждый пользователь понимает, что сердцем любого электронного устройства являются...
Что такое pppoe соединение на роутере
PPPoE (англ. Point-to-point protocol over Ethernet ) — сетевой протокол канального уровня (второй уровень сетевой модели OSI) передачи кадров PPP...
Adblock detector